Druckansicht der Internetadresse:

Faculty of Biology, Chemistry & Earth Sciences

Macromolecular Chemistry II – Prof. Dr. Andreas Greiner & Prof. Dr. Seema Agarwal

Print page

Reviews

Low-density open cellular sponges as functional materials.
S. Jiang, S. Agarwal, A. Greiner, Angew. Chemie - Intern. Ed. 2017, DOI: 10.1002/anie.201700684

Functional materials by electrospinning of polymer.
S. Agarwal, A. Greiner, J. H. Wendorff, Progress in Polymer Science 2013, 38, 963-991. DOI:10.1016/j.progpolymsci.2013.02.001

Vielseitige Nanofaserstrukturen durch Elektrospinnen.
J. H. Wendorff, S. Agarwal, A. Greiner, Nachrichten aus der Chemie 2011, 59, 714-718. DOI: 10.1002/nadc.201180495

Gradient nanowires and nanotubes. (feature article)
S. Agarwal, B. Eckhardt, F. Grossmann, A. Greiner, P. Göring, R. B. Wehrspohn, J. 
H. Wendorff, Phys. Status Solidi B 2010, 247, 2451-2457. DOI: 10.1002/pssb.201046240

Chemistry on electrospun polymeric nanofibers: merely routine chemistry or a real challenge?
S. Agarwal, J. H. Wendorff, A. Greiner, Macromol. Rapid Commun. 2010, 31, 1317-1331. DOI: 10.1002/marc.201000021

Electrospinning of manmade and biopolymer nanofibers-progress in techniques, materials, and applications.S. Agarwal, A. Greiner, J. H. Wendorff, Adv. Funct. Mater. 2009, 19, 2863-2879. DOI: 10.1002/adfm.200900591

Progress in the field of electrospinning for tissue engineering applications.
S. Agarwal, J. H. Wendorff, A. Greiner, Adv. Mater. 2009, 21, 3343-3351. DOI: 10.1002/adma.200803092

Use of electrospinning technique for biomedical applications. S. Agarwal, J. H. Wendorff, A. Greiner, Polymer 2008, 49, 5603-5621. DOI: 10.1016/j.polymer.2008.09.014

Polymere Nanofasern durch Elektrospinnen – Materialien für neue Anwendungen.
S. Agarwal, A. Greiner, J. H. Wendorff, Chemie Ingenieur Technik 2008, 80, 1671-1676. DOI: 10.1002/cite.200800117

State-of-the-art of polymer nanofibers.
S. Agarwal, A. Greiner, Man-Made Fiber Year Book 2008, 10, 1.

Electrospinning of nanofibres: towards new techniques, functions, and applications.
R. Dersch, M. Graeser, A. Greiner, J. H. Wendorff, Aus. J. Chem. 2007, 60, 719-728. DOI: 10.1071/CH07082

Electrospinning: A fascinating method for the preparation of ultrathin fibers.
A. Greiner, J. H. Wendorff, Angew. Chem. Int. Ed. 2007, 46, 5670-5703. DOI: 10.1002/anie.200604646

Elektrospinnen: eine faszinierende Methode zur Präparation ultradünner Fasern.
A.Greiner, J. H. Wendorff, Angew. Chem. 2007, 119, 5770-5805. DOI: 10.1002/ange.200604646

Das Reich der Nanotechnologie am Beispiel von Nanofasern und Nanoröhren.
A. Greiner, Europäischer Wirtschaftsverlag.

Biohybrid nanosystems with polymer nanofibers and nanotubes.
A. Greiner, J. H. Wendorff, A. L. Yarin, A. E. Zussman, Appl. Microbiol. Biotechnol. 2006, 71, 387-393. DOI: 10.1007/s00253-006-0356-z

Bausteine aus Polymeren: Nanofasern und Nanoröhrchen.
R. Dersch, A. Greiner, M. Steinhart, J.H. Wendorff, Chem. Unserer Zeit 2005, 39, 26-35. DOI: 10.1002/ciuz.200400321

Polymer nanofibers prepared by electrospinning.
R. Dersch, A. Greiner, J. H. Wendorff, in: Dekker Encyclopedia of Nanoscience and Nanotechnology, 2004, 293, Eds. Schwartz, J. A., Contesen, C. J.; Putgern, K.; Marcel Dekker New York.

Nanodrähte und Nanoröhren mit Polymeren.
A. Greiner, J. H. Wendorff, M. Steinhart, Nachrichten aus der Chemie 2004, 52, 426-431. DOI: 10.1002/nadc.20040520409


Original papers

Low density, thermally stable, and intrinsic flame retardant poly(bis(benzimidazo)benzophenanthrolinedione) sponge.
J. Zhu, S. Jiang, H. Hou, S. Agarwal, A. Greiner, Macromol. Mater. Eng. 2018 1700615, DOI: 10.1002/mame.201700615

Polymer nanofibre composite nonwovens with metal-like electrical conductivity.
S. Reich, M. Burgard, M. Langner, S. Jiang, X. Wang, S. Agarwal, B. Ding, J. Yu, A. Greiner, npj Flexible Electronics 2018, 2:5, DOI: 10.1038/s41528-017-0018-5

Highly efficient reusable sponge-type catalyst carriers based on short electrospun fibers.
G. Duan, M. Koehn-Serrano, A. Greiner, Macromol. Rapid Commun. 2017, 38, 1600511

Mesostructured ZnO/Au nanoparticle composites with enhanced photocatalytic activity.
C. Bojer, J. Schöbel, T. Martin, T. Lunkenbein, D. R. Wagner, A. Greiner, J. Breu, H. Schmalz, Polymer 2017, 128, 65-70

Nanofibre preparation of non-processable polymers by solid-state polymerization of molecularly self-assembled monomers.
J. Zhu, Y. Ding, S. Agarwal, A. Greiner, Nanoscale 2017, 9, 18169-18174

Exploration of the electrical conductivity of double-network silver nanowires/polyimide porous low-density compressible sponges.
S. Jiang, S. Reich, B. Uch, P. Hu, S. Agarwal, A. Greiner, Appl. Mater Interfaces 2017, 9, 34286-34293

Ultralight, thermally insulating, compressible polyimide fiber assembled sponges
S. Jiang, B. Uch, S. Agarwal, A. Greiner, ACS Appl. Mater. Interfaces 2017, 9, 32308-32315

Exploration of macroporous polymeric sponges as drug carriers.
G. Duan, A. Bagheri, S. Jiang, J. Golenser, S. Agarwal, A. Greiner, Biomacromolecules 2017, 18, 3215-3221 

Ultralight sponges of poly(para-xylylene) by template-assisted chemical vapour deposition.
T. Moss, I. E. Paulus, D. Raps, V. Altstädt, A. Greiner, e-polymers 2017, DOI: https://doi.org/10.1515/epoly-2016-0329

Spongy gels by a top-down approach from polymer fibrous sponges.
S. Jiang, G. Duan, U. Kuhn, M. Mörl, V. Altstädt, A. L. Yarin, A. Greiner, Angew. Chem. Int. Ed. 2017, 56, 3285-3288 DOI: 10.1002/anie.201611787

Electrogenic single-species biocomposites as anodes for microbial fuel cells.
P. Kaiser, S. Reich, D. Leykam, M. Willert-Porada, A. Greiner, R. Freitag, Macromol. Biosci. 2017, 17, DOI: 10.1002/mabi.201600442 

Tensile versus AFM testing of electrospun PVA nanofibers: bridging the gap from microscale to nanoscale.
B. Neugirg, M. Burgard, A. Greiner, A. Fery, Journal of Polymer Science Part B - Polymer Physics 2016, 54, 2418-2424. DOI: 10.1002/polb.24225

Polyimide nanofibers by "green" electrospinning via aqueous solution for filtration applications.
S. Jiang, H. Hou, S. Agarwal, A. Greiner, ACS Sustainable Chemistry & Engineering 2016, 4, 4797-4804. DOI: 10.1021/acssuschemeng.6b01031

Assembly of gold nanoparticles on gold nanorods using functionalized poly(n-isopropylacrylamide) as polymeric "glue".
Z. Fan, M. Tebbe, A. Fery, S. Agarwal, A. Greiner, Particle & Particle Systems Characterization 2016, 33, 698-702. DOI: 10.1002/ppsc.201600081

Patchy wormlike micelles with tailored functionality by crystallization-driven self-assembly: a versatile platform for mesostructured hybrid materials.
J. Schöbel, M. Karg, D. Rosenbach, G. Krauss, A. Greiner, H. Schmalz, Macromolecules 2016 DOI: 10.1021/acs.macromol.6b00330

Wet-laid meets electrospinning: nonwovens for filtration applications from short electrospun polymer nanofiber dispersions.
M. Langner, A. Greiner, Macromol. Rapid Commun. 2016, 37, 351-355. DOI: 10.1002/marc.201500514 

Self-organization of gold nanoparticle assemblies with 3D spatial order and their external stimuli responsiveness.
M. Koehn Serrano, T. A. F. König, J. S. Haataja, T. Lobling, H. Schmalz, S. Agarwal, A. Fery, A. Greiner, Macromol. Rapid Commun. 2016, 37, 215-220. DOI: 10.1002/marc.201500509

Polymer cages as universal tools for the precise bottom-up synthesis of metal nanoparticles. 
Z. Fan, X. Chen, M. Koehn Serrano, H. Schmalz, S. Rosenfeldt, S. Foerster, S. Agarwal, A. Greiner, Angew. Chemie Int. Ed. 2015, 54, 14539-14544. DOI: 10.1002/ange.201506415

Preparing a pseudo-solid by the reinforcement of a polydentate thioether using silver nanoparticles.
H. Pletsch, A. Greiner, S. Agarwal, Nanoscale, 2015, 7, 1977-1983. DOI:10.1039/c4nr06834c

Preparation of conductive gold nanowires in confined environment of gold-filled polymer nanotubes.
F. Mitschang, M. Langner, H. Vieker, A. Beyer, A. Greiner, Macromol. Rapid Commun., 2015, 36, 304-310. DOI:10.1002/marc.201400485

Modified vibrating-mesh nozzles for advanced spray-drying applications.
M. Beck-Broichsitter, I. E. Paulus, A. Greiner, T. Kissel, European Journal of Pharmaceutics and Biopharmaceutics, 2015, 92, 96-101. DOI:10.1016/j.ejpb.2015.03.001

Reversible gold nanorod alignment in mechano-responsive elastomers.
H. Pletsch, M. Tebbe, M. Dulle, B. Foerster, A. Fery, S. Foerster, A. Greiner, S. Agarwal, Polymer 2015, 66, 167-172. DOI:10.1016/j.polymer.2015.04.037

Polymer/nanoparticle hybrid materials of precise dimensions by size-exclusive fishing of metal nanoparticles.
Z. Fan, M. Koehn Serrano, A. Schaper, S. Agarwal, A. Greiner, Adv. Mater. 2015, 27, 3888-+. DOI:10.1002/adma.201501306

Ultrasound-mediated synthesis of high-molecular weight polystyrene-grafted silver nanoparticles by facile ligand exchange reactions in suspension.
H. Pletsch, L. Peng, F. Mitschang, A. Schaper, M. Hellwig, D. Nette, A. Seubert, A. Greiner, S. Agarwal, Small, 2014, 10, 201-208. DOI:10.1002/smll.201300594

Highly flexible and tough concentric triaxial polystyrene fibers.
S. Jiang, G. Duan, E. Zussman, A. Greiner, S. Agarwal, ACS Appl. Mater. & Interfaces, 2014, 6, 5918-5923. DOI:10.1021/am500837s

Tea- bag- like polymer nanoreactors filled with gold nanoparticles.
F. Mitschang, H. Schmalz, S. Agarwal, A. Greiner, Angew. Chem. Int. Ed., 2014, 53, 4972-4975. DOI:10.1002/anie.201402212

Immobilization of catalysts in poly(p-xylylene) nanotubes.
J. A. M. Hepperle, F. Mitschang, A. K. Bier, B. K. Dettlaff, A. Greiner, A. Studer, RSC Advances, 2013, 3, 25976-25981. DOI:10.1039/c3ra43647k

Short nylon-6 nanofiber reinforced transparent and high modulus thermoplastic polymeric composites.
S. Jiang, A. Greiner, S. Agarwal, Composites Science and Technology, 2013, 87, 164-169. DOI:10.1016/j.compscitech.2013.08.011

Short electrospun polymeric nanofibers reinforced polyimide nanocomposites.
S. Jiang, G. Duan, J. Schoebel, S. Agarwal, A. Greiner, Composites Science and Technology, 2013, 88, 57-61. DOI:10.1016/j.compscitech.2013.08.031

Transition-metal-functionalized PAMAM dendrimers encapsulated in PPX tubes as reusable catalysts.
F. Mitschang, B. K. Dettlaff, J. P. Lindner, A. Studer, A. Greiner, Macromolecules, 2013, 46, 8784-8789. DOI:10.1021/ma401815x

Smart secondary polyurethane dispersions.
F. Chen, J. Hehl, Y. Su, C. Mattheis, A. Greiner, S. Agarwal, Polym. Int., 2013, 62, 1750-1757. DOI:10.1002/pi.4481

Tough and Transparent Nylon-6 Electrospun Nanofiber Reinforced Melamine-Formaldehyde Composites.
S. Jiang, H. Hou, A. Greiner, S. Agarwal, ACS Appl. Mater. & Interfaces, 2012, 5, 2597-2603. DOI: 10.1021/am300286m

Vinyl-functionalized gold nanoparticles as artificial monomers for the free radical copolymerization with methyl methacrylate.
K. Gries, M. E. Helou, G. Witte, S. Agarwal, A. Greiner, Polymer 2012, 53, 1632-1639. DOI: 10.1016/j.polymer.2012.02.008

Electrospun copper oxide nanofibers for H2S dosimetry.
J. Hennemann, T. Sauerwald, C.-D. Kohl, T. Wagner, M. Bognitzki, A. Greiner, Phys. Status Solidi A 2012, 209, 911-916. DOI: 10.1002/pssa.201100588

Preparation of continuous gold nanowires by electrospinning of high-concentration aqueous dispersions of gold nanoparticles.
K. Gries, H. Vieker, A. Gölzhäuser, S. Agarwal, A. Greiner, Small, 2012, 8, 1436-1441. DOI: 10.1002/smll.201102308

Ultra-long palladium nanoworms by polymer grafts.
S. Bokern, K. Volz, S. Agarwal, A. Greiner, J. Nanopart. Res. 2012, 14, 1041. DOI: 10.1007/s11051-012-1041-z

Novel layer-by-layer procedure for making nylon-6 nanofiber reinforced high strength, tough, and transparent thermoplastic polyurethane composites.
S. Jiang, G. Duan, H. Hou, A. Greiner, S. Agarwal, ACS Appl. Mater. Interfaces, 2012, 4, 4366-4372. DOI: 10.1021/am3010225

Electrospun nanofiber mats coating – new route to flame retardency.
E. Gallo, Z. Fan, B. Schartel, A. Greiner, Polym. Adv. Technol. 2011, 22, 1205-1210. DOI: 10.1002/pat.1994

Stimuli-responsive elastic polyurethane-based  superabsorber nanomat composites.
F. Chen, A. Greiner, S. Agarwal, Macromol. Mater. Eng., 2011, 296, 517-523. DOI: 10.1002/mame.201000387

Quick polymerization from electrospun macroinitiators for making thermoresponsive nanofibers.
C. Brandl, A. Greiner, S. Agarwal, Macromol. Chem. Eng., 2011, 296, 858-864. DOI: 10.1002/mame.201100031

Precisely designed gold nanoparticles by surface polymerization – artificial molecules as building blocks for novel materials.
S. Bokern, K. Gries, H.-H. Görtz, V. Warzelhan, S. Agarwal, A. Greiner, Adv. Funct. Mater. 2011, 21, 3753-3759. DOI: 10.1002/adfm.201100590

Preparation of gold nanoparticle-poly(L-methyl methacrylate) conjugates via ATRP polymerization.
K. Gries, K. Bubel, M. Wohlfahrt, S. Agarwal, U. Koert, A. Greiner, Macromol. Chem. Phys., 2011, 212, 2551-2557. DOI: 10.1002/macp.201100449

Synthesis of new thermoplastic elastomers by silver nanoparticles as cross-linker.
S. Bokern, Z. Fan, C. Mattheis, A. Greiner,  S. Agarwal, Macromolecules 2011, 44, 5036-5042. DOI: 10.1021/ma200738b

Polymer grafted silver and copper nanoparticles with exceptional stability against aggregation by a high yield one-pot synthesis.
S. Bokern, J. Getze, S. Agarwal, A. Greiner, Polymer 2011, 52, 912-920. DOI: 10.1016/j.polymer.2010.12.031

Highly oriented crystalline PE nanofibrils produced by electric-field-induced stretching of electrospun wet fibers.
T. Yoshioka, R. Dersch, A. Greiner, M. Tsuji, A. K. Schaper, Macromol. Mater. Eng. 2010, 295, 1082-1089. DOI: 10.1002/mame.201000207

Structure property correlations for electrospun nanofiber nonwovens.
D. Hussain, F. Loyal, A. Greiner, J. H. Wendorff, Polymer 2010, 51, 3989-3997. DOI: 10.1016/j.polymer.2010.06.036

Polymeric nanosprings by bicomponent electrospinning. S. Chen, H. Hou, P. Hu, J. H. Wendorff, A. Greiner, S. Agarwal, Macromol. Mater. Eng. 2009, 294, 265-271. DOI: 10.1002/mame.200800342

Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes.
Q. Guo, X. Zhou, X. Li, S. Chen, S. Agarwal, A. Greiner, H. Hou, J. Mater. Chem. 2009, 19, 2810-2816. DOI: 10.1039/b820170f  

High precision deposition electrospinning of nanofibers and nanofiber nonwovens. Ch. Hellmann, J. Belardi, R. Dersch, A. Greiner, J. H. Wendorff, S. Bahnmüller, Polymer 2009, 50, 1197-1205. DOI: 10.1016/j.polymer.2009.01.029

Reusable catalysts based on dendrimers trapped in poly(p-xylylene) nanotubes. J.-P. Lindner, C. Röben, A. Studer, M. Stasiak, R. Ronge, A. Greiner, J. H. Wendorff,  Angew. Chem. Int. Ed. 2009, 48, 8874-8877. DOI: 10.1002/anie.200903448

Poly(styrene-co-n-butyl acrylate) nanofibers with excellent stability against water by electrospinning from aqueous colloidal dispersions. A. Stoiljkovic, R. Venkatesh, E. Klimov, V. Raman, J. H. Wendorff, A. Greiner, Macromolecules 2009, 42, 6147-6151. DOI: 10.1021/ma900354u

Effect of different bicomponent electrospinning techniques on the formation of polymeric nanosprings. S. Chen, H. Hou, P. Hu, J. H. Wendorff, A. Greiner, S. Agarwal, Macromol. Mater. Eng. 2009, 294, 781-786. DOI: 10.1002/mame.200900139

“Barbed nanowires” from polymers via electrospinning.
A. Holzmeister, A. Greiner, J. H. Wendorff, Polym. Engineering and Science, 2009, 49, 148-153. DOI: 10.1002/pen.21233

Immobilization of oligostyrene-prolinol conjugates into polystyrene via electrospinning and applications of these fibers in catalysis.
C. Röben, M. Stasiak, B. Janza, A. Greiner, J. H. Wendorff, A. Studer, Synthesis 2008, 14, 2163-2168. DOI: 10.1055/s-2008-1067146

Polymer tubes with longitudinal composition gradient by face-to-face wetting. O. Kriha, P. Göring, M. Milbradt, S. Agarwal, M. Steinhart, R. Wehrspohn, J. H. Wendorff, A. Greiner, Chem. Mater. 2008, 20, 1076-1081. DOI: 10.1021/cm702088v

Functional self-assembled nanofibers by electrospinning.
A. Greiner, J. H. Wendorff, Adv. Polym. Sci. 2008, 219, 107-171. DOI: 10.1007/12_2008_146

Electrospun silica – polybenzimidazole nanocomposite fibers.
T. von Graberg, A. Thomas, A. Greiner, M. Antonietti, J. Weber, Macromol. Mater. Eng. 2008, 293, 815-819. DOI: 10.1002/mame.200800183

Electrospinning of poly-L-lactide nanofibers on liquid reservoir collectors.
T. Röcker, A. Greiner, e-Polymers 2008, No. 111.
 
Electrospun nanofiber belts made from high performance copolyimide.
S. Chen, P. Hu, A. Greiner, C. Cheng, H. Cheng, F. Chen, H. Hou, Nanotechnology 2008, 19, 015604 (9pp). DOI: 10.1088/0957-4484/19/01/015604

Cylindrical polymer nanostructures by solution template wetting.
S. Schlitt, A. Greiner, J. H. Wendorff, Macromolecules 2008, 41, 3228-3234. DOI: 10.1021/ma071822k

Stoichiometric functionalization of gold nanoparticles in solution through a free radical polymerization approach.
C. Krüger, S. Agarwal, A. Greiner, J. Am. Chem. Soc. 2008, 130, 2710-2711. DOI: 10.1021/ja0763495

Magnetically anisotropic cobalt and iron nanofibers via electrospinning.
M. Graeser, M. Bognitzki, W. Massa, C. Pietzonka, A. Greiner, J. H. Wendorff,
Adv. Mater. 2007, 19, 4244-4247. DOI: 10.1002/adma.200700849

Structurally and chemically heterogeneous nanofibrous nonwovens via electrospinning.
A. Holzmeister, M. Rudisile, A. Greiner, J. H. Wendorff, Europ. Polym. J. 2007, 43, 4859-4867. DOI: 10.1016/j.eurpolymj.2007.09.014

Design of polymer nanofiber systems for the immobilization of homogeneous catalysts – preparation and leaching studies.
M. Stasiak, C. Röben, N. Rosenberger, Fl. Schleth, A. Studer, A. Greiner, J. H. Wendorff, Polymer 2007, 48, 5208-5218. DOI: 10.1016/j.polymer.2007.07.006

Polymer core-shell fibers with metal nanoparticles as nanoreactor for catalysis.
M. Graeser, E. Pippel, A. Greiner, J. H. Wendorff, Macromolecules 2007, 40, 6032-6039. DOI: 10.1021/ma070898d

Polymer fibers as carriers for homogeneous catalysts.
M. Stasiak, A. Studer, A. Greiner, J. H. Wendorff, Chem. Eur. J. 2007, 13, 6150-6156. DOI: 10.1002/chem.200601555

One-step production of polymeric microtubes by co-electrospinning.
Y. Dror, W. Salalha, R. Avrahami, E. Zussman, A. L. Yarin, R. Dersch, A. Greiner, J. H. Wendorff, Small 2007, 3, 1064-1073. DOI: 10.1002/smll.200600536

Organic tube/rod hybrid nanofibers with adjustable segment lengths by bidirectional template wetting.
O. Kriha, L. Zhao, E. Pippel, U. Gösele, R. B. Wehrspohn, J. H. Wendorff, M. Steinhart, A. Greiner, Adv. Funct. Mat. 2007, 17, 1327-1332. DOI: 10.1002/adfm.200601021

Nondestructive mechanical release of ordered polymer microfiber arrays from porous templates.
S. Grimm, K. Schwirn, P. Göring, H. Knoll, P. T. Miclea, A. Greiner, J. H. Wendorff, R. B. Wehrspohn, U. Gösele, M. Steinhart, Small 2007, 3, 993-1000. DOI: 10.1002/smll.200600544

Preparation of sub-micrometer copper fibers via electrospinning.
M. Bognitzki, M. Becker, M. Graeser, W. Massa, J. H. Wendorff, A. Schaper, D. Weber, A. Beyer, A. Gölzhäuser,  A. Greiner, Adv. Mater. 2006, 18, 2384-2386. DOI: 10.1002/adma.200600103

Polyelectrolyte functionalization of electrospun fibers.
K. Müller, J. F. Quinn, A. P. R. Johnston, M. Becker, A. Greiner, F. Caruso, Chem. Mater. 2006, 18, 2397-2403. DOI: 10.1021/cm0527060k

Preparation of hollow silica nanospheres by surface-initiated atom transfer radical polymerization on polymer latex templates.
Y. W. Chen, E. T. Kang, K. G. Neoh, A. Greiner, Adv. Funct. Mater., 2005, 15, 113-117. DOI: 10.1002/adfm.200400179

Preparation of poly(p-xylylene) TUFT-tubes containing palladium, silver, or copper nanoparticles.
Z. Sun, J. Zeng, H. Hou, H. Wickel, J. H. Wendorff, A. Greiner, Progr. Colloid Polym. Sci. 2005, 130, 15-19. DOI: 10.1007/b107393

Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes.
H. Hou, J. J. Ge, J. Zeng, Q. Li, D. H. Reneker, A. Greiner, S. Z. D. Cheng, Chem. Mater. 2005, 17, 967-973. DOI: 10.1021/cm0484955

Photo-induced solid-state crosslinking of electrospun poly(vinyl alcohol) fibers.
J. Zeng, H. Hou, J. H. Wendorff, A. Greiner, Macromol. Rapid Commun. 2005, 26, 1557-1562. DOI: 10.1002/marc.200500545

Poly(vinyl alcohol) nanofibers by electrospinning: influence of molecular weight on fibre shape.
J. Zeng, H. Hou, J. H, Wendorff, A. Greiner, e-Polymers 2005, No. 38.

Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics.
R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, J. H. Wendorff, Polym. Adv. Technol. 2005, 16, 276-282. DOI: 10.1002/pat.568

The role of iron carbide in multiwalled carbon nanotube growth. A. K. Schaper, H.  Hou, A. Greiner, F. Phillipp, Jounal of Catalysis 2004, 222, 250-254. DOI: 10.1016/j.jcat.2003.11.011

Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylnitrile environments: electrospun composite nanofiber sheets.
J. J. Ge, H. Hou, Q. Li, M. J. Graham, A. Greiner, D. H. Reneker, F. W. Harris, S. Z. D. Cheng, J. Am. Chem. Soc. 2004, 126, 15754-15761. DOI: 10.1021/ja048648p

Copper nanoparticles encapsulated in multi-shell carbon cages.
A. K. Schaper, H. Hou, A. Greiner, R. Schneider, F. Philipp, Appl. Phys. A. 2004, 78, 73-77. DOI: 10.1007/s00339-003-2199-0

Compound core-shell polymer nanofibers by co-electrospinning.
Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, A. Greiner, Adv. Mater. 2003, 15, 1929-1932. DOI: 10.1002/adma.200305136

Large scale synthesis and characterization of helically coiled carbon nanotubes by use of Fe(CO)5 as floating catalyst precursor.
H. Hou, J. Zeng, F. Weller, A. Greiner, Chem. Mater. 2003, 15, 3170-3175. DOI: 10.1021/cm021290g

Poly-L-lactide nanofibers by electrospinning – influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology.
J. Zeng, H. Hou, A. Schaper, J. H. Wendorff, A. Greiner; e-Polymers 2003, No. 9.

Electrospun nanofibers: internal structure and intrinsic orientation.
R. Dersch, T. Liu, A. K. Schaper, A. Greiner, J. H. Wendorff; J. Polym. Sci.: Part A: Polym. Chem. 2003, 41, 545-553. DOI: 10.1002/pola.10609

Large-scale synthesis of aligned carbon nanotubes using FeCl3 as floating catalyst precursor.
H. Hou, A. K. Schaper, J. Zeng, F. Weller, A. Greiner, Chem. Mater. 2003, 15, 580-585. DOI: 10.1021/cm020970g

Multi-walled carbon nanotubes with uniform chirality: evidence for scroll structures.
W. Ruland, A. K. Schaper, H. Hou, A. Greiner, Carbon 2003, 41, 423-427. DOI: 10.1016/S0008-6223(02)00342-1

Carbon nanotubes and spheres produced by modified ferrocene pyrolysis.
H. Hou, A. K. Schaper, F. Weller, A. Greiner, Chem. Mater. 2002, 14, 3990-3994. DOI: 10.1021/cm021206x

Polymer nanotubes via wetting of ordered porous templates.
M. Steinhart, J. H. Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, U. Gösele, Science 2002, 296, 1997. DOI: 10.1126/science.1071210

Poly(p-xylylene) nanotubes by coating and removal of ultrathin polymer template fibers.
H. Hou, J. Zeng, A. Reuning, A. Schaper, J. H. Wendorff, A. Greiner, Macromolecules 2002, 35, 2429-2431. DOI: 10.1021/ma011607i

Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers.
R. A. Caruso, J. H. Schattka, A. Greiner, Adv. Mater. 2001, 13, 1577-1579. DOI: 10.1002/1521-4095(200110)13:20<1577::AID-ADMA1577>3.0.CO;2-S

Preparation of fibers with nanoscaled morphologies: electrospinning of polymer blends.
M. Bognitzki, T. Frese, M. Steinhart, A. Greiner, J. H. Wendorff, A. Schaper, M. Hellwig, Polymer Engineering and Science 2001, 41, 982-989. DOI: 10.1002/pen.10799

Nanostructured fibers via electrospinning.
M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J. H. Wendorff, Adv. Mater. 2001, 13, 70-72. DOI: 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.3.CO;2-8

Polymer, metal, and hybrid nano- and mesotubes by coating degradable polymer templates fibers(TUFT process).
M. Bognitzki, H. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. 
H. Wendorff, A. Greiner, Adv. Mater. 2000, 12, 637-640. DOI: 10.1002/(SICI)1521-4095(200005)12:9<637::AID-ADMA637>3.0.CO;2-W

Facebook Twitter Youtube-Kanal Instagram Blog Contact