Druckansicht der Internetadresse:

Faculty of Biology, Chemistry & Earth Sciences

Macromolecular Chemistry II – Prof. Dr. Andreas Greiner (Macromolecular Chemistry & Technology) & Prof. Dr. Seema Agarwal (Advanced Sustainable Polymers)

Print page



Disentangling biological effects of primary nanoplastics from dispersion paints' additional compounds


Ann-Kathrin Müller, Julian Brehm, Matthias Völkl, Valérie Jérôme, Christian Laforsch, Ruth Freitag, Andreas Greiner

Ecotoxicology and Environmental Safety 2022 doi.org/10.1016/j.ecoenv.2022.113877

Microplastic particles (MP) and nanoplastic particles (NP) as persistent anthropogenic pollutants may impact environmental and human health. A relevant potential source of primary MP and NP is water-based dispersion paint which are commonly used in any household. Given the worldwide high application volume of dispersion paint and their diverse material composition MP and NP may enter the environment with unforeseeable consequences. In order to understand the relevance of these MP and NP from paint dispersion we investigated the components of two representative wall paints and analyzed their composition in detail. The different paint components were then investigated for their impact on the model organism Daphnia magna and on a murine cell line. Plastic NP, dissolved polymers, titanium dioxide NPs, and calcium carbonate MPs demonstrated adverse effects in both biological test systems, indicating detrimental consequences of several typical components of wall paints upon release into the environment. The outcome of this study may form the basis for the evaluation of impact on other organisms, environmental transport and impact, other related technical materials and for the development of strategies for the prevention of potential detrimental effects on organisms.

Facebook Twitter Youtube-Kanal Instagram UBT-A Contact