Druckansicht der Internetadresse:

Faculty of Biology, Chemistry & Earth Sciences

Macromolecular Chemistry II – Prof. Dr. Andreas Greiner (Macromolecular Chemistry & Technology) & Prof. Dr. Seema Agarwal (Advanced Sustainable Polymers)

Print page



Self-Assembled Fluorescent Block Copolymer Micelles with Responsive Emission


Hannah Kurz, Christian Hils, Jana Timm, Gerald Hörner, Andreas Greiner, Roland Marschall, Holger Schmalz, Birgit Weber

Angew. Chem. Int. Ed. 2022, https://doi.org/10.1002/anie.202117570

Responsive fluorescent materials offer a high potential for sensing and (bio-)imaging applications. To investigate new concepts for such materials and to broaden their applicability, the previously reported non-fluorescent zinc(II) complex [Zn(L)] that shows coordination-induced turn-on emission was encapsulated into a family of non-fluorescent polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymer micelles leading to brightly emissive materials. Coordination-induced turn-on emission upon incorporation and ligation of the [Zn(L)] in the P4VP core outperform parent [Zn(L)] in pyridine solution with respect to lifetimes, quantum yields, and temperature resistance. The quantum yield can be easily tuned by tailoring the selectivity of the employed solvent or solvent mixture and, thus, the tendency of the PS-b-P4VP diblock copolymers to self-assemble into micelles. A medium-dependent off-on sensor upon micelle formation could be established by suppression of non-micelle-borne emission background pertinent to chloroform through controlled acidification indicating an additional pH-dependent process.

Facebook Twitter Youtube-Kanal Instagram UBT-A Contact