Druckansicht der Internetadresse:

Faculty of Biology, Chemistry & Earth Sciences

Macromolecular Chemistry II – Prof. Dr. Andreas Greiner (Macromolecular Chemistry & Technology) & Prof. Dr. Seema Agarwal (Advanced Sustainable Polymers)

Print page

News

Overview


Preparation of Biocomposite Microfibers Ready for Processing into Biologically Active Textile Fabrics for Bioremediation

24.04.2019

P. Kaiser, S. Reich, A. Greiner, R. Freitag

Kaiser, P., Reich, S., Greiner, A., Freitag, R., Macromol. Biosci. 2018, 18, 1800046. https://doi.org/10.1002/mabi.201800046

Biocomposites, i.e., materials consisting of metabolically active microorganisms embedded in a synthetic extracellular matrix, may find applications as highly specific catalysts in bioproduction and bioremediation. 3D constructs based on fibrous biocomposites, so‐called “artificial biofilms,” are of particular interest in this context. The inability to produce biocomposite fibers of sufficient mechanical strength for processing into bioactive fabrics has so far hindered progress in the area. Herein a method is proposed for the direct wet spinning of microfibers suitable for weaving and knitting. Metabolically active bacteria (either Shewanella oneidensis or Nitrobacter winogradskyi (N. winogradskyi)) are embedded in these fibers, using poly(vinyl alcohol) as matrix. The produced microfibers have a partially crystalline structure and are stable in water without further treatment, such as coating. In a first application, their potential for nitrite removal (N. winogradskyi) is demonstrated, a typical challenge in potable water treatment.

Facebook Twitter Youtube-Kanal Instagram UBT-A Contact