Druckansicht der Internetadresse:

Faculty of Biology, Chemistry & Earth Sciences

Macromolecular Chemistry II – Prof. Dr. Andreas Greiner (Macromolecular Chemistry & Technology) & Prof. Dr. Seema Agarwal (Advanced Sustainable Polymers)

Print page

News

Overview


New Paper: Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems

27.05.2015

Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems
André Baudler, Igor Schmidt, Markus Langner, Andreas Greiner, Uwe Schröder Energy Environ. Sci., 2015,8, 2048-2055 DOI: 10.1039/C5EE00866B

Copper and silver are antimicrobial metals, on whose surface bacteria do not grow. As our paper demonstrates, this commonly reported antimicrobial property does not apply to electrochemically active, electrode respiring bacteria. These bacteria readily colonize the surface of these metals, forming a highly active biofilm. Average anodic current densities of 1.1 mA cm−2 (silver) and 1.5 mA cm−2 (copper) are achieved – data that are comparable to that of the benchmark material, graphite (1.0 mA cm−2). Beside the above metals, nickel, cobalt, titanium and stainless steel (SUS 304) were systematically studied towards their suitability as anode materials for microbial fuel cells and related bioelectrochemical systems. The bioelectrochemical data are put in relation to physical data of the materials (specific conductivity, standard potential) and to basic economic considerations. It is concluded that especially copper represents a highly promising anode material, suitable for application in high-performance bioelectrochemical systems.

Facebook Twitter Youtube-Kanal Instagram UBT-A Contact